3) Le défi impossible du recyclage industriel des D.E.E.E

       Selon l’Ademe, un Équipement Électrique et Électronique (EEE) est un équipement conçu pour être utilisé à une tension ne dépassant pas 1500 volts en courant continu. Cette définition chapote donc une multitude d’appareils aux fonctions variées : machine à laver, télévision, perceuse, distributeur automatique, lampe, téléphone portable, etc. Cette définition a notamment pour objet de pouvoir réglementer les propagations toxiques : la directive D.E.E.E. vise ainsi à limiter l’exposition aux flux de mercure, de cadmium, de plomb, et autres agents pathogènes.

Si en 2013 le marché des D3E représentait 23 kg de marchandises pour chaque français, la part de déchets collectés s’élevait seulement à 6.9 kg [25], ce qui est légèrement en deçà de la moyenne de l’Union, le reste ayant été exporté, recyclé dans des conditions non conformes, ou bien jeté à la poubelle. La collecte est donc insuffisante par rapport aux besoins de récupération, mais les possibilités même de recyclage sont limitées : seulement 40% de la masse des TIC est recyclable [26].

Pour les smartphones par exemple, les matériaux communs comme le fer, le cuivre ou le zinc sont en majeure partie recyclés. Mais gardons à l’esprit que les éléments qui composent la batterie (15% du poids total), peuvent être inutiles si le potentiel ionisant est épuisé (lithium principalement, cobalt, graphite, cuivre). Surtout, une quarantaine d’autres métaux sont utilisés de façon diffuse : ils ne pèsent pas plus de 0.2% du poids total . En ce qui les conçerne, et en dépit de leur préciosité, ils ne sont pas recyclés à plus de 1%, s’ils sont recyclés (gallium, indium, tantale, germanium, lanthanides) [27]. Ce n’est pas surprenant, car la fabrication miniaturisée se fait par couches successives, et chaque composant aura les attributs intégrés d’un mini-méta-matériaux. Par conséquent, non seulement le recyclage se heurte à des difficultées techniques titanesques, mais une quantité d’énergie gigantesque sea nécessaire pour ne récupérer que des particules infimes. On ne sera pas surpris dès lors qu’au total, seul 0.1% des nanomatériaux de l’électronique soit recyclé [28].

Seulement 40% de la masse des TIC est recyclable

La demande actuelle faite au consommateur de rapporter des produits en boutique ne préfigure pas toujours le réemploi des matériaux mais assure l’amoncellement de NTIC sur des dépotoirs géants de pièces usinées, remarquables de précision, mais considérées comme obsolètes. Ces déchets se retrouvent fréquemment dans des pays du Sud, notamment en Inde, en Chine, et en Afrique de l’ouest. Souvent, des plages entières sont sacrifiées pour acceuillir les D3E du Nord et il n’est pas rare qu’aucune instance publique de régulation soit responsable des lieux. Or, la récupération à la volée des métaux et des composants dont nous sommes consommateurs débouche très vite sur des cancers rares et funestes.

A force d’extraction, les mines n’offrent plus de bons rendements métalliques : les déchets électroniques deviennent donc plus précieux, ce sont des « gisements urbains ». Et pour cause : il se trouve 3 fois plus d’or dans une tonne de téléphones portables que dans une tonne de minerais d’or [29].

*        *       *

Quelle responsabilisation de l’usager des NTIC ?

En moyenne, un français consomme à l’année 8 kg de cuivre, 5 kg de zinc et 1 kg de nickel [30] ; si l’on décompte l’automobile, le reste de cette consommation passe essentiellement par les TIC et les nouveaux produits électroménagers. Or, si la consommation électrique imputée aux TIC explose, la performance énergétique des produits est au point mort : elle dépend surtout de la programmation de nouveaux algorythmes pour transmettre ou recevoir les données, ce qui rencontre tôt ou tard des limites [31]. La voie engagée de la haute technologie ne permet pas de réduire significativement l’empreinte énergétique depuis l’introduction de métaux rares comme le hafnium ou le germanium ; ceux-ci vont améliorer la performance énergétique à l’usage, mais impliqueront en amont une dépense d’énergie plus forte.

Par conséquent, la marge de l’utilisateur se situe surtout dans ses modalités d’accès à Internet : un téléphone connecté en 3G peut consommer davantage que le GSM pour échanger 1Gb [32]. Evidément, les utilisateurs peuvent limiter leur émissions de GES associées à leurs produits, en restreignant les applications ouvertes, en évitant d’utiliser internet, ou les vidéos en ligne par exemple — question que nous aborderons dans un autre article. Du point de vue de l’énergie d’usage des technologies, des efforts peuvent être consentis : ne nous sentons pas obligés de consommer autant d’énergie avec un smartphone qu’avec un réfrigirateur (plus de 360 kWh/an) [33] !

A cet égard, la majorité des écogestes reste vains et sans effets. Ainsi, David MacKay dénonce le cache-misère des éco-gestes : si tout le monde en fait un petit peu, nous n’accomplirons qu’un petit peu. Il remarque notamment l’inneficacité complète des consignes consistant à débrancher les chargeurs [34] :

  • Toute l’énergie économisée en débranchant votre chargeur pendant un jour est consommée en une seconde de conduite ;
  • L’énergie économisée en débranchant le chargeur pendant un an est égale à l’énergie d’un seul bain chaud.

Durant tout ce temps où les concitoyens du Nord s’évertuent à placer des fumigènes devant leur vue, ils consomment des montagnes calorifères. A l’heure de la mondialisation du XXIème siècle, on ne devrait pas être surpris d’apprendre que nous importons notre énergie comme nous exportons nos pollutions. Un citoyen britannique consomme au moins 40 kilowatt/heure par jour directement importé d’Asie, si l’on tient compte de la fabrication des objets manufacturés : machines-outils, électroménager, électronique, automobiles, acier etc. Durant tout ce temps aussi, les multinationales trompent les consommateurs en rendant leurs produits obsolètes, en contournant les règlementations, pour relancer la machine extractive toujours davantage polluante. Ainsi, une fois l’achat d’un matériel effectué, il ne reste guère de marge pour diminuer l’empreinte globale du produit : nous espérons en avoir apporté la preuve. Dans la mesure du possible, il faut donc mettre à disposition les composants électroniques conformes et valides, et réparer tout ce qui peut l’être.

*

*                 *

Notes & Références

[25] ADEME, Rapport annuel sur la mise en œuvre de la réglementation relative aux Déchets d’Équipements Électriques et Électroniques (DEEE), 2013, op. cit. p.39

[26] G. Trouvé, intervention à la Ubuntu Party le 29/11/2015 à la Cité des sciences, sur le thème : L’angle mort écologique du numérique, à consulter sur : http://media.ubuntu-paris.org/videos/15.10/angle-mort-ecologie-numerique.webm

[27] Voir les information sur l’article d’Eric Drezer sur : http://ecoinfo.cnrs.fr/article328.html

[28] Information échangée au Forum Nanoresponsabilités, le 25/11/2015 à Paris ; voir le compte-rendu : http://www.nanoresp.fr/wp-content/uploads/2015/12/CR-Forum-Nano%C3%A9nergie_FIN.pdf

[29] La quantité de minerais d’or dans 1 tonne de téléphones portables est estimée à 15 grammes, d’après G. Trouvé dans son intervention à la Ubuntu Party le 29/11/2015 à la Cité des sciences, sur le thème : L’angle mort écologique du numérique, à consulter sur : http://media.ubuntu-paris.org/videos/15.10/angle-mort-ecologie-numerique.webm ; selon Bihouix, 5 grammes récupérés dans 1 tonne de minerais d’or d’après l’entretien réalisé par Basta! mag avec Philippe Bihouix : http://www.bastamag.net/Quand-le-monde-manquera-de-metaux

[30] Bihouix P., De Guillebon B., Quel futur pour les métaux ? […], 2010, op. cit., p.23, ou à consulter sur la page 6 du document : http://www.la-bibliotheque-resistante.org/mes_textes/quel_futur_pour_les_metaux_chap_intro.pdf

[31] Voir : http://www.lowtechmagazine.com/2009/06/embodied-energy-of-digital-technology.html

[32] Voir la source citée Par Fabrice Flipo dans L’infrastructure numérique en question, Entropia, N°3, 2007, p.2 URL : http://fabrice.flipo.free.fr/Publications/2007/Flipo%20Entropia%20L%27infrastructure%20num%E9rique%20en%20question.pdf :  « M. Faist Emmenegger, R. Frischknecht, M. Stutz, M. Guggisberg, R. Witschi & T. Otto, LCA of the mobile communication system UMTS, in SETAC, 11th LCA Case Studies Symposium – Abstracts, 2003, p.105-10 »

[33] Voir l’article du journal : http://www.la-croix.com/Actualite/Economie-Entreprises/Economie/Votre-smartphone-consomme-plus-que-votre-refrigerateur-!-2013-08-20-1000083

[34] Levraud J. P., Le Boudec J-Y., L’énergie durable – pas seulement du vent ! David J.C. MacKay, Un synopsis en dix pages, Institut Pasteur, EPFL, 2010, p.3 ; à télécharger sur :  www.amides.fr/sewtha_synopsis_pdf.php

 

 

 

 

 

 

 

Partagez autour de vous :